

University of Michigan Santa Fe Institute

Diversity Bonuses: How Are Differences Make Us Better At What We Do

AGOS Chicago 10/8/2016

Outline

Outline

Diversity Bonuses In Context Problem Solving Prediction

Aside: Identity Diversity
Practice

Diversity Bonuses In Context

Right Thing to Do

(Normative Ought)

Identity Based Knowledge

Diversity 3.0

Mark Nivet AAMC

Diversity Bonuses: Cognitive Diversity Produces Better Outcomes on Difficult Tasks

Logic

Crowd Error = Average Error - Diversity

$$(c - q)^2 = \frac{1}{n} \mathop{a}\limits_{i=1}^n (s_i - q)^2 - \frac{1}{n} \mathop{a}\limits_{i=1}^n (s_i - c)^2$$

The Checklist Manifesto

Author: Atul Gawande

DIFFERENCE

HOW THE POWER OF DIVERSITY CREATES BETTER GROUPS, FIRMS, SCHOOLS, AND SOCIETIES

Scott E. Page

Information

Knowledge

Heuristics

Representations

Mental Models

Problem Solving

A Test

Create a collection of agents with diverse **perspectives** and **heuristics**

Rank them by their performance on a problem.

Note: all of the agents must be "smart"

Experiment

Group 1: Best 20 agents Group 2: Random 20 agents

Have each group work collectively - when one agent gets stuck at a point, another agent tries to find a further improvement. Group stops when no one can find a better solution.

The IQ View

M

The diverse group almost always outperforms the group of the best by a substantial margin.

Lu Hong and Scott Page

Proceedings of the National Academy of Sciences (2002)

What Must be True?

Calculus Condition: *Problem solvers must all be smart--we must be able to list their local optima*

Diversity Condition: *Problem solvers must have diverse heuristics and perspectives*

Hard Problem Condition: Problem itself must be difficult

Kleinberg Raghu Model:

Each person is a distribution over solutions.

Team value equals function of solutions.

`` We also show families of submodular and supermodular team performance functions for which no test applied to individuals can produce near-optimal teams."

Jon Kleinberg, and Maithra Raghu, Cornell University, Ithaca NY

No Single Test Determines the Best Team If the Problem is Hard.

Prediction

The Wisdom of Crowds

Author: James Surowiecki

Diversity Prediction Theorem

Crowd Error = Average Error - Diversity

$$(c - q)^{2} = \frac{1}{n} \mathop{\otimes}\limits_{i=1}^{n} (s_{i} - q)^{2} - \frac{1}{n} \mathop{\otimes}\limits_{i=1}^{n} (s_{i} - c)^{2}$$

Crowd Error = Average Error – Diversity 0.6 = 2,956.0 - 2955.4

Six years of data Half million users 17,700 movies

Data divided into (training, testing) Testing Data dived into (probe, quiz, test)

Singular Value Decomposition

Each movie represented by a vector: $(p_1, p_2, p_3, p_4, p_n)$

Each person represented by a vector: $(q_1,q_2,q_3,q_4...q_n)$

BellKor

- 50 dimensions
- 107 models

Best Model: 6.8% Improvement

BellKor

- 50 dimensions
- 107 models

Best Model: 6.8% improvement

Combination of Models: 8.4%

BellKor's Pragmatic Chaos

Best Model 8.4%

Ensemble: 10.1%

Enter ``The Ensemble''

23 Teams30 Countries

And the Winner is...

Ensemble Bellkor 10.06% 10.06%

But, the Real Winner is...

 Ensemble
 10.06%

 Bellkor
 10.06%

 50-50 Combination
 10.19%

Economic Forecasts

1969-200928,000 forecasts by professional economists6 economic indicators

Crowd mean 21% better than average person

Mannes, A. E., Soll, J. B., & Larrick, R. P. (2014). The wisdom of select crowds. Journal of Personality and Social Psychology, 107, 276-299.

Exhibit 3: Team-Managed Funds Relative to Single-Managed Funds (Annual Returns)

(Data)

Academic Research Papers 1960

Academic Research Papers 2016

M

Papers > 100 Cites

Teams vs Solo Citations# SubdisciplinesTeams WinSolo WinsSciences1674

Social Science540Patents324

Three Metaphors

#1 The Iceberg

#2 The Bundle of Sticks

(Wasow and Sen 2014)

#3 The Great Blue Herons

Great Blue Heron

Great Blue Herons

Great Blue Herons

Great Blue Herons

Sweden

Zimbabwe

Each person brings a unique repertoire of information, knowledge, experiences, heuristics, representations, and mental models.

Practice

1

The Water

"Morning, boys. How's the water?"

David Foster Wallace

"What the hell is water?"

David Foster Wallace

Share Information, Knowledge, and Practices

Figure 12 Infant Death Rates and Fetal Death Ratios 1943-2010

Cast Wide Nets

Mammograms

Map 6.4. Mammography

In 1993, the percentage of women undergoing one or more mammograms was high in the Northeast – notably New York State – and in Florida, Michigan, and most of California. North and South Dakota were remarkably split between high and low rate areas, as were Illinois, Colorado, and Wyoming.

Percentage of Medicare Women Who Had Mammograms by Hospital Referal Region (1993)

24.1 to 35.6% (61 HRRs) 20.8 to <24.1% (61) 18.4 to <20.8% (61) 16.2 to <18.4% (61) 9.2 to <16.2% (62) Not Populated

Ceasarians

Radical Candor

M

Thank You

